A partnership between the National Oceanography Centre, Met Office and British Antarctic Survey, and Centre for Polar Observation and Modelling.

The Joint Marine Modelling Programme (JMMP) provides world-class and easily accessible national capability, ocean modelling infrastructure and configurations to support the UK’s scientific research and operational prediction systems for ocean, weather and climate. 

Model configurations are underpinned by the Nucleus for European Modelling of the Ocean (NEMO) framework. JMMP works closely with the NEMO consortium to develop the underpinning model capability. 

The JMMP has three themes: Global Ocean, Coastal Ocean and Sea Ice.

What is the NOC's role?

The NOC is working across the partnership to co-develop the research configurations, which when mature are operationalised by the Met Office. The research configurations are developed to address: (1) scientific questions (e.g. impact under a changing climate, or improved representation of physical processes); (2) improved numerical accuracy of key variables (e.g, ocean temperature); and (3) codebase updates to align with the NEMO consortium.

Aim

The aim of the project is to efficiently align research and operational needs. The research side of the partnership helps expedite the pull through of cutting-edge research into operational outcomes. The operational side of the partnership helps target research toward priority areas of strategic need.

We maintain a critical mass of national capability expertise to maintain evolving UK strategic needs in the maritime sector; ii) participate in international partnerships and projects with relocatable expertise.

Global Ocean and Sea Ice

At the NOC global ocean and Sea Ice themes actively develops and maintains global ocean physics configurations of NEMO at 1/4 degree and 1/12 degree resolutions. These configurations use the sea ice model, SI3.

Coastal Ocean

At the NOC the Coastal Ocean theme actively develops and maintains regional physics configurations of NEMO, covering the Northwest European seas, at 7km and 1.5km horizontal resolution.

At the NOC the Coastal Ocean theme actively engages with Climate Centre Research Singapore to support their development of Southeast Asia regional configurations and national capability infrastructure to support regional needs.

Global Ocean and Sea Ice

 Storkey, D., Blaker, A. T., Mathiot, P., Megann, A., Aksenov, Y.,  Blockley, E. W., Calvert, D., Graham, T., Hewitt, H. T., Hyder, P.,  Kuhlbrodt, T., Rae, J. G. L., and Sinha, B.: “UK Global Ocean GO6 and GO7: a traceable hierarchy of model resolutions”, Geoscientific Model Development, 11, 3187-3213, https://doi.org/10.5194/gmd-11-3187-2018, 2018.​​​​​

https://www.bodc.ac.uk/projects/data_management/uk/osmosis/

Ridley, J. K., Blockley, E. W., Keen, A. B., Rae, J. G. L., West, A. E., and Schroeder, D.: The sea ice model component of HadGEM3-GC3.1, Geosci. Model Dev., 11, 713–723, https://doi.org/10.5194/gmd-11-713-2018, 2018.

Coastal Ocean

Tonani, Sykes, King, McConnell, Pequignet, O’Dea, Graham, Polton, Siddorn (2019), The impact of a new high-resolution ocean model on the Met Office North-West European Shelf forecasting system. Ocean Sci.,15(4), https://doi.org/10.5194/os-15-1133-2019. 

Graham, J. A., E. O’Dea, J. Holt, J. Polton, H.T. Hewitt, R. Furner, K. Guihou, A. Brereton, A. Arnold, S. Wakelin, J.M. Castillo Sanchez, C.G. Mayorga Adame (2018) AMM15: A new high resolution NEMO configuration for operational simulation of the European north-west shelf, Geosci. Model Dev., 11(2), 681-696, https://doi:10.5194/gmd-11-681-2018 . 

Guihou K., J.A. Polton, J. Harle, S. Wakelin, E. O’Dea, J. Holt (2018) Kilometric scale modeling of the North West European Shelf Seas: Exploring the spatial and temporal variability of internal tides. J. Geophys. Research: Oceans, 123:688-707, doi:10.1002/2017JC012960. 

Recent Science References

Inall, Toberman, Polton, Palmer, Green, Rippeth (2021). Shelf seas baroclinic energy loss: pycnocline mixing and bottom boundary layer dissipation, Journal of Geophysical Research - Oceans, 126(8). http://dx.doi.org/10.1029/2020JC016528

Luneva M.V., S. Wakelin, J. Holt, M.E. Inall, I.E. Kozlov, M.R. Palmer, M. Toberman, E.V. Zubkova, J.A. Polton (2019), Challenging vertical turbulence mixing schemes in a tidally ener- getic environment: Part I. 3D shelf-sea model assessment, J. Geophys. Res., 124, 6360 - 6387,https://doi.org/10.1029/2018JC014307.

Holt, J., J. Polton, J. Huthnance, S. Wakelin, E. O’Dea, J. Harle, A. Yool, Y. Artoli, J. Blackford, J. Siddorn, M. Inall (2018) Climate-driven change in the North Atlantic and Arctic Ocean can greatly reduce the circulation of the North Sea, GRL, https://doi.org/10.1029/2018GL078878. 

Jeff A. Polton, James Harle, Jason Holt, Anna Katavouta, Dale Partridge, Jenny Jardine, Sarah Wakelin, Julia Rulent, Anthony Wise, Katherine Hutchinson, David Byrne, Diego Bruciaferri, Enda O’Dea, Michela De Dominicis, Pierre Mathiot, Andrew Coward, Andrew Yool, Julien Palmi´eri, Gen- nadi Lessin, Claudia Gabriela Mayorga-Adame, Val´erie Le Guennec, Alex Arnold, and Cl´ement Rousset (2023) Reproducible and relocatable regional ocean modelling: fundamentals and practices. Geoscientific Model Development, 16, pp1481-1510, doi:10.5194/gmd-16-1481-2023

Wise, Anthony, James Harle, Diego Bruciaferri, Enda O’Dea, Jeff Polton (2022). The effect of vertical coordinates on the accuracy of a shelf sea model. Ocean Modelling, 170 (101935). doi:10.1016/j.ocemod.2021.101935.

Luneva M.V., S. Wakelin, J. Holt, M.E. Inall, I.E. Kozlov, M.R. Palmer, M. Toberman, E.V. Zubkova, J.A. Polton (2019), Challenging vertical turbulence mixing schemes in a tidally energetic environment: Part I. 3D shelf-sea model assessment, J. Geophys. Res., 124, 6360 - 6387, doi:10.1029/2018JC014307.

 
JMMP