Project objectives
- Develop a suite of novel high performance analytical technologies to measure biogeochemical parameters, which are suitable for use in small low cost sensors that can be mass-produced.
- Develop at, or near market, sensor packages for the marine and wider environmental industries.
- Develop common core technologies for use on all sensors.
- Ensure the seamless integration of all developed sensors in respect to mechanical setup and electronic interfaces.
- Design and adaptation for manufacturing and market
- Detailed testing of the sensor technology and integrated sensor suites.
- Design production systems (including tooling where necessary) for large numbers (1000s) of sensors.
- Demonstration of developed sensor packages on multiple platforms in a wide range of environments
Peer Reviewed Papers
Clinton-Bailey, G. S., Grand, M. M., Beaton, A. D., Nightingale, A., Slavik, G., Mowlem, M. C., Connelly, D. P. (2017) A lab-on-chip analyzer for in situ measurement of soluble reactive phosphate: improved phosphate blue assay and application to fluvial monitoring. Environ. Sci. Technol. doi: 10.1021/acs.est.7b01581
Grand, M. M., Clinton-Bailey, G. S., Beaton, A. D., Schaap, A. M., Johengen, T. H., Tamburri, M., Connelly, D. P., Mowlem, M. C., Achterberg, E. P. (2017) A Lab-On-Chip Analyzer for Long-Term in Situ Monitoring at Fixed Observatories: Optimization and Performance Evaluation in Estuarine and Oligotrophic Coastal Waters. Front. Mar. Sci. doi: 10.3389/fmars.2017.00255
Fritzsche, E., Gruber, P., Schutting, S., Fischer, J.P., Strobl, M., Müller, J. D., Borisov, S. M., Klimant, I. (2017) Highly sensitive poisoning-resistant optical carbon dioxide sensors for environmental monitoring. Analytical Methods 9 (1), 55-65 doi:10.1039/c6ay02949c
Lochman, L., Zimcik, P., Klimant, I., Novakova, V., Borisov, S. M. (2017) Red-emitting CO2 sensors with tunable dynamic range based on pH-sensitive azaphthalocyanine indicators. Sensors and Actuators B: Chemical 246, 1100-1107 doi: 10.1016/j.snb.2016.10.135
Strobl, M., Walcher, A., Mayr, T., Klimant, I., Borisov, S.M. (2017) Trace Ammonia Sensors Based on Fluorescent Near-Infrared-Emitting aza-BODIPY Dyes. Analytical Chemistry 89 (5), 2859-2865 http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b04045
Müller, B., Rappitsch, T., Staudinger, C., Rüschitz, C., Borisov, S. M., Klimant, I. (2017) Sodium-Selective Fluoroionophore-based Optodes for Seawater Salinity Measurement. Analytical Chemistry doi:10.1021/acs.analchem.7b01373
Strobl, M., Mayr, T., Klimant, I., Borisov, S.M. (2017) Photostable upconverting and downconverting pH sensors based on combination of a colorimetric NIR indicator and stable inorganic phosphors as secondary emitters. Sensors and Actuators B: Chemical 245, 972-979 doi:10.1016/j.snb.2017.01.189
McQuillan, J. S., Hopper, D.j., Magiopoulos, I., Arundell, M., Brown, R., Shorter, S., Mowlem, M. C., Pascal, R. W., Connelly, D. (2016) Buzz off! An evaluation of ultrasonic acoustic vibration for the disruption of marine micro-organisms on sensor-housing materials. Lett. Appl. Microbiol., 63 (6), 393-399 doi:10.1111/lam.12671
Barus, C., Romanytsia, I., Striebig, N., Garçon, V. (2016) Toward an in situ phosphate sensor in seawater using Square Wave Voltammetry. Talanta doi:10.1016/j.talanta.2016.07.057
Rérolle, V., Ruiz-Pino, D., Rafizadeh, M., Loucaides, S., Papadimitriou, S., Mowlem, M., Chen, J. (2016) Measuring pH in the Arctic Ocean: Colorimetric method or SeaFET? Methods Oceanogr., 17, 32-49 doi:10.1016/j.mio.2016.05.006
Moßhammer, M., Strobl, M., Kühl, M., Klimant, I., Borisov, S. M., Klaus, K. (2016) Design and Application of an Optical Sensor for Simultaneous Imaging of pH and Dissolved O2 with Low Cross-Talk. ACS Sens., 1 (6), 681–687 doi:10.1021/acssensors.6b00071
Nightingale, A. M., Beaton, A. D., Mowlem, M. C. (2015) Trends in microfluidic systems for in situ chemical analysis of natural waters. Sensors and Actuators B: Chemical, 221, 1398-1405 doi:10.1016/j.snb.2015.07.091
Nielsen, M., Larsen, L.H., Ottosen, L.D.M., Revsbech, N.P. (2015) Hydrogen microsensors withhydrogen sulfide traps. Sensors and Actuators B: Chemical, 215, 1-8 doi:10.1016/j.snb.2015.03.035
Aguilar, D., Barus, C., Giraud, W., Calas, E., Vanhove, E., Laborde, A., Launay, J., Temple-Boyer, P., Striebig, N., Armengaud, M., Garçon, V. (2015) Silicon-based electrochemical microdevices for silicate detection in seawater. Sensors and Actuators B: Chemical, 211, 116-124 doi:10.1016/j.snb.2015.01.066
Schutting, S., Jokic, T., Strobl, M., Borisov, S. M., de Beer, D., Klimant, I. (2015) NIR optical carbon dioxide sensors based on highly photostable dihydroxy-aza-BODIPY dyes. J. Mater. Chem. C, 3, 5474-5483 doi:10.1039/C5TC00346F
Staudinger, C.; Borisov, S. M. (2015) Long-Wavelength Analyte-Sensitive Luminescent Probes and Optical (Bio)sensors. Methods Appl. Fluoresc. 3 (4), 42005 doi: 10.1088/2050-6120/3/4/042005
Aigner, D., Freunberger, S. A., Wilkening, M., Saf, R., Borisov, S.M., I. (2014) Enhancing Photoinduced Electron Transfer Efficiency of Fluorescent pH-Probes with Halogenated Phenols. Anal. Chem., 86 (18), 9293–9300 doi:10.1021/ac502513g
Deliverables
D7.8 Policy Document Sensor Development for the Ocean of Tomorrow
A joint deliverable produced by the SenseOCEAN, COMMONSENSE, SCHeMA and NeXOS projects.