LIDAR applications in coastal morphology and hazard assessment

November 23, 2010
Aftermath of debris flow at Matata (Aerial photograph courtesy Whakatane Beacon)
The use of LIDAR for debris flow hazard analysis is still in its early days.
Prof. Jon Bull
November 23, 2010

Southampton scientists along with colleagues in New Zealand have used a sophisticated optical mapping technique to identify and accurately measure changes in coastal morphology following a catastrophic series of landslides.

“Our findings are important for assessing geological hazards and reducing the dangers to human settlements,” said geophysicist Professor Jon Bull of the University of Southampton’s School of Ocean and Earth Science based at the National Oceanography Centre, Southampton,

Matata is a small coastal town located on the Bay of Plenty at the northern end of New Zealand’s North Island close to a highly active volcanic zone. On 18 May 2005, the town was inundated by devastating debris flows. These flows resulted from torrential rain that triggered widespread landslips in the catchments of the Awatarariki and Waitepuru streams in the steeply rising hills behind the town.

Debris flows are liquefied landslides of water-saturated material that flow very rapidly down steep-sided channels. In the case of the 2005 Matata event, boulders, logs and other debris were carried by the flows, which also swept away cars and even whole buildings, although fortunately no-one was killed. The material eventually spilt out along the coast where it was deposited to form a large fan-like sediment deposit.

To help understand the complex pattern of sediment deposition, the researchers compared information obtained using a technique called Light Detection and Ranging technology (LIDAR) before and after the 2005 event.

“LIDAR uses the time taken for reflected light to return from objects or surfaces to determine the range, in a similar manner to radar. It can be used to monitor coastal evolution, and to identify and precisely measure landform changes resulting from geological events such as landslides,” explained Helen Miller, who worked on the project during her MSc project, and is now a PhD student at Southampton.

Based on LIDAR, eye-witness accounts, field investigations and aerial photographic surveys, theresearchers estimate that debris flows sourced in the Awatarariki stream transported at least 350,000 cubic metres of debris.

The researchers were able to map the sediment flow paths in detail, along with changes caused by the clear-up operation and the creation of man-made levees after the debris flow event. Their observations show that the final shape of the debris fan, as well as spatial differences in make-up and consistency, were largely influenced by existing physical features such as sand dunes.

“The use of LIDAR for debris flow hazard analysis is still in its early days, but it has the advantage of giving a synoptic view over a large area.” said Bull. “Ours is one of the first studies using ‘before and after’ comparisons of LIDAR data to assess changes in coastal morphology.”

 The researchers are Jon Bull, Helen Miller and Justin Dix (SOES), Darren Gravley (Universityof Canterbury, Christchurch),Daniel Costello and Dan Hikuroa (University of Auckland).

Helen Miller was supported by the University of Southampton (Richard Newitt Bursary) and the Society for Underwater Technology (Educational Support Fund).

Image:

An aerial photograph (18 May 2005) showing the debris flow from the Awatarariki Stream. The emergence of the Awatarariki Stream onto the flat coastal plain is visible, as is the lobate boulder train. This photograph was taken before any remediation activity and is a good record of the immediate aftermath of the debris flow. Large boulders were limited to the area between the line of the buildings and the base of the hill. Fine debris was deposited as a debris flood in the foreground, forming small lobate fan structures. (Aerial photograph courtesy Whakatane Beacon.) 

Bull, J. M., Miller, H., Gravley, D. M., Costello, D., Hikuroa, D. C. H. & Dix, D. K. Assessing debris flows using LIDAR differencing: 18 May 2005 Matata event, New Zealand. Geomorphology 124, 75–84 (2010). doi:10.1016/j.geomorph.2010.08.011


Home | Back to top


Information for…

Business

The outputs of research generate new knowledge about the oceans. Transferring scientific knowledge to support business and industry is an important part of our NOC remit.

More

Researchers

Our research is intended to tackle the big environmental issues facing the world. Research priorities will include the oceans' role in climate change, sea level change and the future of the Arctic Ocean.

More

Students

The University of Southampton and the University of Liverpool both offer a range of highly regarded undergraduate and post-graduate degrees in Ocean and Earth Science.

More

Media

For any media or press enquiries to the National Oceanography Centre follow the more link below. Please note the centre's press office is staffed from 0830 to 1730, Monday to Friday.

More

Staff

NOC Staff can access the Intranet and Webmail resources at the following URLS.

Everyone

Follow what we are up to:

Follow NOCnews on Twitter Follow NOCSnews on Youtube Follow NOC on facebook

Delivery Partners

Delivery Partners helping to provide marine science national capability.

More

Marine Science Community

The creation of a wider association of Universities and research institutions to support wider engagement of the NOC with the marine science community is now underway.

More 

Library

The National Oceanographic Library is a national resource for the UK marine science community.

More 

Principal scientists

All updated information for cruise participants can be found using the Marine Facilities Planning website:

More